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1. Introduction

Performance enhancement as well as parallel
transmission of optical solitons across trans-oceanic and
trans-continental distances are the key features to
technological marvel in telecom industry. These can be
only achieved by the aid of DWDM system where
parallel transmission of data is possible. This paper will
address DWDM system for dispersive optical solitons
that are governed by the Schrddinger-Hirota equation
(SHE). Although DWDM systems have been studied in
the past, this paper will consider it in presence of four-
wave mixing (4WM) terms that will make the model
much closer to reality. With the inclusion of 4WM, it is
necessary to have phase-matching condition among the
components to permit integrability. The integration
algorithm that will be implemented is the modified
simple equation scheme [1-25]. Both Kerr law and
parabolic law of nonlinearity are studied in this paper.
Dark and singular soliton solutions are obtained together
with their existence criteria that are also presented.

2. Overview of modified simple equation
method

Here is the nonlinear evolution equation:

P(u,u,,u,,u,,, Uy, U,,...) = 0. ()

XX !
In (1), P is a polynomial in u(X,t) and its partial
derivatives where the highest order derivatives and

nonlinear terms are involved. The main steps of this
scheme are as follows [2, 3]:

Step-1: The transformation
u(x,t) =u(é), & = x—ct,

where C is a constant to be determined, reduces Eq. (1) to
the following ordinary differential equation:

@

Q(u,u’,u",...) =0, (3)

where Q is a polynomial in U(&) and its total derivatives,

while the notation is

Step-2: Assume Eq. (3) permits the structural solution:

]

are constants to be determined, such that

v'($)
w(&)

(4)

u(E) = ia.[

1=0

where @,

ay =0, and w(&) is an unknown function that is yet to
be determined.

Step-3: We find the value of positive integer N in Eq. (4)
by considering the homogeneous balance between the
highest order derivatives with nonlinear terms in Eq. (3).
Step-4: We plug in (4) into (3) and compute all the
necessary derivatives U, u , A of the unknown function
u(&) and we account for the function (&) . As a result of

this substitution, we recover a polynomial in i (&)/ (&)
and its derivatives. In this polynomial, we gather all the
terms of the same power of w‘j(f),j =0,1,2,... and its



404 Ahmed H. Arnous, M. M. Babatin, Mir Asma, Anjan Biswas

derivatives, equate all coefficients of this polynomial to
zero. This procedure yields a system of equations that

needs to be solved to evaluate &, and (&) . Thus,
finally, one recovers exact solutions of Eq. (1) .

3. Application to DWDM system with 4WM

This modified simple equation scheme will be
applied to DWDM system that appears with 4WM.
There are two laws of nonlinearity that are going to be
considered. The study will now be split into the
following two subsections based on the type of nonlinear
medium.

3.1. Kerr law nonlinearity

For Kerr law nonlinearity, DWDM model with
4WM reads [4]

in 0] 0]
Iqt +aqux +bqut +

N

m/? (n)

{CI 0O + e Ja
nzl

P ©)
g"| =0.

N
Z}q(') " Zﬂmq(l)*
n=l

Here, 1< | < N . The first term in (5) on left hand side
is the linear evolution term, while a, represents the

coefficient of GVD; by represents the STD. Then, C, is
the coefficient of self-phase modulation (SPM) while

a,, are the coefficients of cross-phase modulation

(XPM), while A, accounts for AWM. The independent

variables are x and t that represents the spatial and
temporal variables respectively. The dependent variable

is " (x,t) that represents soliton profile in every

single channel for 1< <N .
In order to solve (5) for solitons, the following
solution structure is taken into consideration:

i) (x.1)

aV(x ) =R(&e", ®)
where the wave variable & is given by
& =k(x—vt). )

Here, B (&) represents the amplitude component of the
soliton solutions and V is the speed of the soliton, while
the phase component @, (X, t) is defined as

D, (x,t) = —xX+ ot + 0, (8)

where 1<1 <N . Here B (X,t) represents the amplitude
portion of the soliton and from the phase component, x is
the frequency of the soliton, @ is the wave number of the
soliton and finally & is the phase constant. Substituting (6)

into (5) and decomposing into real and imaginary parts lead
to

k?(a —vb) P +(Ka)b, - K% —a))P, +

N ©)
CI I:)IS + I:)IZ(aln +ﬂln)Pn2 = 0’
n=l
and

(1-bx)P +(bw-2ax)P =0. (10)

The imaginary part equation leads to the speed of the
soliton that is given by

_bo-2ax 1)
1-bx
Using the balancing principle leads to
P=R. (12)
Consequently, Egs. (9) reduces to
k*(a —vh) R +(Ka)b, - K°a, —a)) P+
N 5 (13)
{C| + Z(am +ﬂ|n)} R* =0,
n=l

Balancing P with P* in Egs. (13), then we get N =1.
Consequently we reach
v ()

P (&)= z5 0.
(&) ao+a{w(§)j a, # (14)

Substituting Eq. (14) in Eg. (13) and then setting the
coefficients of (&), j=0,1,2,3, to zero, then we
obtain a set of algebraic equations involving a,, a,, K, «,

., B b,V and @ as follows:

1//‘3 coeff.:

2 f }
C
Ay’ & { | +Z(aln +B.) ¢+ -0, (15)

n=l

2k? (a, —vhy)

1//_2 coeff.:
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aap {c.+i(a.n+/f.n>}+ )
% =0,

331 n=l (16)
Ky (Vb —a)
l//’l coeff.:
_ 2 . _
W' 38, (CI +Z(aln +ﬂ|n)j_ N
n=l
=0, 17
% ax’ +Kxob - o (7
K (8, —Vhy) |
1,//0 coeff.:
N
e+ (a, +B) ¢~
RES TRV SIS
k’a, + (kb —1)
Solving this system, we obtain
_ I K°a, — kb, + @
a.o - N 1
\/CI +Z(aln +ﬂ|n)
n=l : (19)
2k (&, — Vb,
a4 =m/= N( I I) !
CI +z(aln +ﬂln)
n=l
and
. 2(/(28. — Kah) +a)) '
=+ |- ' ——y 20
v \/ k?(a, —Vh) )
2(K2a| — Kb, +a)) :
=- 21
v k?(a, —Vhy) &
From Egs. (20) and (21), we can deduce that
. k?(a —Vvh)
=+ |-
v i) \/ 2(1(28.| — Kb, +a))
(22)

Z(I(zal —wal +w)

ce I~y ) ’

_ k?(a —Vvh)
wie)= 2(1c2aI — Kol +a))
(23)
72(1(23' ﬂ(a)bl +a))
2
ce o) +C,,

where C; and C, are constants of integration. Substituting
Eg. (22) and Eqg. (23) into Eq. (14), we obtain following the
following exact solution to Eq. (5).

[ K72, — Kby + @
G +ZNl(a.n +50) _

; k?(a —vh)
\/(c, +i(aln + ﬂ,n)j(zczal — ko + ) | (24)

n=l

10) _
q (X7t) - Z(Kzal —Kwby +w)
C167 kz(a\I —vbl) :
k*(a —Vvh)
2<K2a, — Kb, +a))
2(K2a| —Kmbl +1u)
R kz(a —vb) :
ce Y g,
x ei(—xx+(ot+9) .
If we set

Z(Kzal —/c(ubl +(u)

2(K2a| — Kab, +a)) N ) o

=_ =41
“ K@ vb) BT
we obtain:
2 —
qV(xt) = + I K a,N Kob, + @
¢+ (o, +
\/ | ZI:( In :BIn) (25)
tanh| | KA EDFO Qe
2k*(a, —vb,) °
% ei(—ro(+a)t+9) '
or
g (x.t) = & KZa,N— Kob, +
G +§(aln + i) (26)

K’a, — kb, + @ B
coth [\/—m(k(x Vt)+§0):|
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1(— X+ wt+0)

xe ,

where V is given by (11). Solutions (30) and (31) are
valid when

—Kkab, +@0>0, ¢ +i(a,n+ﬂm)>0, (27)

n=l

a,—vb <0. (28)

3.2. Parabolic law nonlinearity
This law is alternatively known as the cubic-quintic

nonlinearity. For parabolic law nonlinearity, DWDM,
with 4WM, is modeled as [14]:
z}qm n

et o

N

.l | I NE

iq” +aqy +ha? +{C| |q( )| +Za|n q®”
n=l

{ |q(|)| +Z ( i

() M2 A0 ()2
5,0 g +Zﬂ1n|q FqO (qm) +
n=l n=l

N 2 2 U 3
27ed™ 0 (a”) + 20,0 (a™) =0.

n=l n=l

(n) (n)

(n)

(n)

for 1<I <N . In (29), SPM terms are the coefficients
of ¢, and d, , while XPM coefficients are «,,, B,

and 7,, . Also, the terms with o,,, 4,,, v, and o,

are accounted for 4WM in parabolic law medium.

In this case, substituting (6) into (29), leads to
the same imaginary part as given by (10). Again, the
speed will be the same as (11). The real part equation
however is

k*(a —vb)P’ +(/c2a, — Kb, +a))P, +¢P*+d,P°+

N (aln +é}n)Pn2|3I + (ﬂln +V|n)Pn4PI + (30)
z (}/In—’_ﬂ'ln)PnZPI3 :O‘
" +Gln Pn3PI2
Using the balancing principle leads to
P=R. (31)
Consequently, Egs. (30) reduces to
k?(a —vb) P +(Ka)b, ~xa, —a)) R+
32)

{c. £ (a +6.n)} R+

n=l

{dl +ZN:(ﬂln +V|n +}/In +ﬂ1n +Gln)} I:)Is = O

n=l

Set
1
P=Up? (33)
so that (32) transform to
k* (& —vb ) {2U,U; —U;? | +
Ka)b - K%a - )U,2 +
(34)

4{c +Z(a,n +5,n)}U,3 +

n#l

4{d +Z(ﬁm VY A, O }U =0.

n=l

Balancing U,U, with U,' in Egs. (34), then we get

N

=1. Consequently we reach

U, (&)= a0+a1("”((§))J a #0.

Substituting Eq. (35) in Eqg. (34) and then setting the

(3%)

coefficients of l//’j(f), ]=0,1,2,3,4 to zero, then we

obtain a set of algebraic equations involving a,, a,, K, «,

%y Vins Ons Vinr Bin 0y, V and @ as follows:

‘//74

e

w2

a (v)' { N

coeff.:
k?(a —vh)+4a;

Z(ﬂln +Vln +7/In +ﬂ'ln +O—In)+dl

n=l

} =0, (36)

coeff.:

N
4a1y/2(a121// (43.0 ;(ﬂln +Vln +7/In +ﬂ1n +O_In)

+d,

8)+6) +ak? S

+zN:(a,n +

n=l

aky'(a —vh)) =

y (vb—a)+

coeff.:

al(a1(4l//2 (3a0 {CI + i(aln + é‘ln)} +

n=l

(38)

n=l

GaE{i(ﬂln Vit +ﬂ’ln+o-ln)+dl}_

K’a, + kb — ) +K* (1//" )2 (Vb —a)+

2K*y "y (&, — Vb)) —6ak“y y (8 —vb)) =0,
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v  coeff.:
N
2a0a1((// (6a0 {CI + Z(aln + é]n)} -
n#l

4(1('2&, — Kb, +a))+ (39)

n=l

88‘5 {i(ﬂln +Vln +7/In +/1|n +O—In)+dl})+
k" (3 -vb)) =0,

!,//O coeff.:

2 {CI + ZN:(aln + é]n)} +

n=l

[N

aé{i(ﬂln +Vln +7In +ﬂln +O_In)+dl}_ = 0’ (40)

n=l

48y

x’a, +o(xb 1)

Solving this system, we obtain

n=l

S(CI + i(aln + é‘ln))

a,=— 5 :
4(dl +Z(ﬂln +Vln +7/In +Z’In +O—In)j
n=#l
1 3k (a, — Vb,
& :E - N ( ! I) )
dI +Z(18In +Vln +7/In +ﬁ’ln +O_In)
n=l
N
16K2a| [dl +Z(ﬁln + Vi + Y+ A +O—In))+
n=l
N 2
S(CI +Z(0‘|n +5|n)j
w= n=l

16(Kbl _1)[dl +i(ﬂln VitV +ﬂ'ln +O—In)] (41)

n=l

and

{CI +i(aln +5In)j . (42)

n#l

v = N
4k2[dl +Z(ﬁln +Vln +y|n +/11n +O_In)j(a1 —Vh)

nzl

{CI + i(am + é]n)] (43)
v,

nzl

v == N
4k2(d| +Z(ﬂln Vi + Vi + A +O—In)](al _Vbl)

nzl

From Egs. (42) and (43), we can deduce that

4k2(dl +i(ﬂn +Vln +7/In +ﬂ1n +O_In)j

n#l

(3 -vb)
S[Q +i(a.n+6.n)j (44)

v (&)=

N 2
{CI *Z(“In +On )}

n#l

nzl

N
4k2[dl +Z('qn+"ln+7ln i+ )J(al by )
ce

4k2 (dl +i(lgln +Vln +7In +ﬂin +O-In)j

n#l

vo=—2"0) 2
N (45)
B[C. +D (@, + Oﬁn)J
I {CI +i(”ln *+0in )}
\J 4k2{dl+i(ﬁln+"ln+7ln“1n+"ln)](ai_Vb|)
Cle n=l + CZ’

where C; and C, are constants of integration. Substituting

Eq. (44) and Eq. (45) into Eq. (35), we obtain following the
following exact solution to Eq. (29).

n=l

S[CI + ZN:(aln + é]n)j

" (xt) =~ .
4(dl +Z(ﬂln +V|n +7/In +/?'In +O—In))

n=l

N 2
3[c| *Z(aln“ﬁn)}

nzl

N ¢
a? 4+ D B in*7in*An*oin) (al _Vbl)
k?(a —vb) CE\J { ;

N 1
C + Z(aln +0y,)

n=l

4k2[d| +i(lgln Vi Vi A +O'|n)j(a| _Vbl)
S(CI +i(aln +5In)]

n=l

N 2
3[(:' +Z(aln *‘ﬁn)}

nzl

N
‘”‘Z[dl *Z(/fln n*7in*n HT|n)](a| -y
ce el +C,

% ei(—xx+a)t+0). (46)

If we set
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3(CI + ZN:(aln + é‘ln)j

n=l

C,=-

4k £d| +i(ﬂm Vi + Vi + A +U|n)j(a| _Vb|)

n=#l

N 2
3[cl *Z(alnﬂyln)}
n=l
N
4'(2{‘%+z(ﬁln+vm+7ln+‘1n+°’|n)J(éﬂ o)
ce el , C, =41,

1

we obtain:

3((% +NZ(04n +én)]
4(dl +iﬁn +Vln +]/In +2In +qn)j

(x)=

N 2
3[9 +>{a, +<in)j
nA
N
x{1+tanh| | 16K [d, B+ 0+ +0'”)]
nA

(3-vh)
L k(x-\)+&)
> ei(—;o(+zut+9) , (47)

or

{q +:Z§o;n +én)j

d(xt)= 5
AR T—
{q %{% +c?n)j
¢ 1+aath

165(0! &(ﬁﬁ%ﬁ%ﬁ%ﬁ%)}(a*b)
| Kx~)+5)

> ei(—ro(+wt+9) ' (48)

Solutions (47) and (48) are valid when

n=l

{d, + zN:(ﬂ,n T e )}(aI —vb,)<0. (49)

4. Conclusions

This paper obtained dark and singular soliton
solutions to DWDM system that was studied in presence
of 4WM. The modified simple equation approach was
adopted to obtain the soliton solutions that appeared

under restrictive conditions which, in this paper, are referred
to as constraint conditions. The results are novel and
meaningful although an inherent drawback of this
integration algorithm is that it fails to retrieve the much
needed bright soliton solution. Several other integration
schemes are nevertheless available to secure bright soliton
solutions. A few of them are extended trial equation method,
Bernoulli’s algorithm, Kudryashov’s technique and several
others. The results of the application of these schemes will
be reported elsewhere.
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